Erratum to "Collapsible biclaw-free graphs": [Discrete Math 306 (2006) 2115-2117]

نویسندگان

  • Hong-Jian Lai
  • Xiangjuan Yao
چکیده

If G is a 2-connected bipartite biclaw-free graph with (G) 4, then by [2, Lemma 2.2], every edge of G lies in a 4-cycle, and then by Lemma 2.5 (the correct version), G is collapsible. It follows that G will have a spanning eulerian subgraph. Note that a Hamiltonian cycle of G is a spanning eulerian subgraph of G with maximum degree 2. We consider it one possible way to attack Conjecture 1.1 of [2] (originally from [3]). We apologize to the readers for our careless errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collapsible biclaw-free graphs

A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected bipartite biclaw-free graph with δ(G) ≥ 5, then G is collapsible, and of course supereulerian. This bound is best possible.

متن کامل

Collapsible graphs and Hamiltonian connectedness of line graphs

Thomassen conjectured that every 4-connected line graph is Hamiltonian. Chen and Lai [Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics— an update, in: Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory, vol. 95, World Scientific, Singapore/London, 1995, pp. 53–69, Conjecture 8.6] conjectured that every 3-edge connected, essentially 6-edge connected graph ...

متن کامل

The Bondage Number of Graphs with Crossing Number Less than Four

The bondage number b(G) of a graph G is the smallest number of edges whose removal results in a graph with domination number greater than the domination number of G. Kang and Yuan [Bondage number of planar graphs. Discrete Math. 222 (2000), 191198] proved b(G) 6 min{8,∆+ 2} for every connected planar graph G, where ∆ is the maximum degree of G. Later Carlson and Develin [On the bondage number o...

متن کامل

Graph parameters measuring neighbourhoods in graphs - Bounds and applications

The neighbourhood-width of a graph G= (V ,E) is introduced in [F. Gurski, Linear layouts measuring neighbourhoods in graphs, Discrete Math. 306 (15) (2006) 1637–1650.] as the smallest integer k such that there is a linear layout : V → {1, . . . , |V |} such that for every 1 i < |V | the vertices u with (u) i can be divided into at most k subsets each members having the same neighbours with resp...

متن کامل

Domination dot-critical graphs with no critical vertices

A graph G is dot-critical if contracting any edge decreases the domination number. It is totally dot-critical if identifying any two vertices decreases the domination number. Burton and Sumner [Discrete Math. 306 (2006) 11–18] posed the problem: Is it true that for k 4, there exists a totally k-dot-critical graph with no critical vertices? In this paper, we show that this problem has a positive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2007